Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Rep ; 42(8): 113012, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37598340

RESUMEN

How the opportunistic Gram-negative pathogens of the genus Achromobacter interact with the innate immune system is poorly understood. Using three Achromobacter clinical isolates from two species, we show that the type 3 secretion system (T3SS) is required to induce cell death in human macrophages by inflammasome-dependent pyroptosis. Macrophages deficient in the inflammasome sensors NLRC4 or NLRP3 undergo pyroptosis upon bacterial internalization, but those deficient in both NLRC4 and NLRP3 do not, suggesting either sensor mediates pyroptosis in a T3SS-dependent manner. Detailed analysis of the intracellular trafficking of one isolate indicates that the intracellular bacteria reside in a late phagolysosome. Using an intranasal mouse infection model, we observe that Achromobacter damages lung structure and causes severe illness, contingent on a functional T3SS. Together, we demonstrate that Achromobacter species can survive phagocytosis by promoting macrophage cell death and inflammation by redundant mechanisms of pyroptosis induction in a T3SS-dependent manner.


Asunto(s)
Achromobacter , Piroptosis , Humanos , Animales , Ratones , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Sistemas de Secreción Tipo III , Modelos Animales de Enfermedad , Proteínas de Unión al Calcio , Proteínas Adaptadoras de Señalización CARD
2.
J Environ Public Health ; 2022: 8028275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874877

RESUMEN

Technologies are increasingly independent and play important roles in society. Artificial intelligence (AI) is a branch of science that can improve various environments and processes. The health sector stands out among these contexts, especially ophthalmology and dentistry. Studies evaluating the impact of using these technologies in these contexts are still developing. There are still few studies that assess how AI can impact the decision-making process of health professionals and how it can improve the quality of care provided to these professionals. In this sense, this study aims to evaluate the perception of the impact of AI on the decision-making process of health professionals and the quality of patient care from the perspective of ophthalmologists and dentists. The methodological strategy used was the application of an online questionnaire with eighteen professionals in these areas. Based on the respondents' opinions, we sought to assess how these decision-making processes are affected by the use of technologies and how they impact the quality of patient care. As a result, it was observed that AI has become essential and a facilitator of the diagnostic processes. However, it presents some challenges related to cost, accessibility, AI x professional responsibility, and incentive of agreements.


Asunto(s)
Inteligencia Artificial , Oftalmología , Atención a la Salud , Personal de Salud , Humanos , Percepción
3.
J Environ Public Health ; 2022: 8670534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685861

RESUMEN

Colon cancer is a disease characterized by the unusual and uncontrolled development of cells that are found in the large intestine. If the tumour extends to the lower part of the colon (rectum), the cancer may be colorectal. Medical imaging is the denomination of methods used to create visual representations of the human body for clinical analysis, such as diagnosing, monitoring, and treating medical conditions. In this research, a computational proposal is presented to aid the diagnosis of colon cancer, which consists of using hyperspectral images obtained from slides with biopsy samples of colon tissue in paraffin, characterizing pixels so that, afterwards, imaging techniques can be applied. Using computer graphics augmenting conventional histological deep learning architecture, it can classify pixels in hyperspectral images as cancerous, inflammatory, or healthy. It is possible to find connections between histochemical characteristics and the absorbance of tissue under various conditions using infrared photons at various frequencies in hyperspectral imaging (HSI). Deep learning techniques were used to construct and implement a predictor to detect anomalies, as well as to develop a computer interface to assist pathologists in the diagnosis of colon cancer. An infrared absorbance spectrum of each of the pixels used in the developed classifier resulted in an accuracy level of 94% for these three classes.


Asunto(s)
Neoplasias del Colon , Aprendizaje Profundo , Neoplasias del Colon/diagnóstico por imagen , Atención a la Salud , Humanos , Imágenes Hiperespectrales
4.
Kidney Int Rep ; 6(5): 1254-1264, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013103

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) is a risk factor for herpes zoster (HZ) infection. Few studies have examined HZ vaccine (HZV) in this population. We conducted a systematic review and meta-analysis investigating the efficacy and safety of HZV in patients with renal disease (CKD, dialysis, and transplant). METHODS: MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases (up to May 2020) were searched for randomized controlled trials and nonrandomized controlled studies evaluating HZV in patients with CKD for effectiveness and adverse event risks. Studies without a control group (placebo or no vaccine) were excluded. Extraction of prespecified data and risk of bias assessments using the Newcastle-Ottawa scale for cohort studies and the Cochrane Risk of Bias Tool for randomized controlled trials were done by 3 authors. Random-effects meta-analysis was used to generate pooled treatment effects and 95% confidence intervals. RESULTS: Included were 404,561 individuals from 8 studies (3 randomized controlled trials and 5 nonrandomized). All 8 studies examined HZ as an outcome, with 3 reporting adverse events. Risk of HZ was lower in patients who received HZV compared with controls (hazard ratio, 0.55; 95% confidence interval, 0.37-0.82; P < 0.01); however, heterogeneity was high (I 2 = 88%, P < 0.01). There was no significant difference in adverse events associated with HZV (hazard ratio, 1.03; 95% confidence interval, 0.54-1.28; P = 0.8). CONCLUSIONS: HZV compared with control significantly lowers the risk of HZ without an increase in adverse events in CKD patients. However, significant heterogeneity was present. HZV should be actively considered in CKD patients because the prevalence of HZ is higher in this population.

5.
Expert Opin Drug Discov ; 16(4): 365-371, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33356641

RESUMEN

Introduction: Despite advances in drug research and development, our knowledge of the underlying molecular mechanisms of many diseases remains inadequate. This have led to limited effective medicines for several diseases. To address these challenges, efficient strategies, novel technologies, and policies are urgently needed. The main obstacles in drug discovery and development are the mounting cost, risk, and time frame needed to develop new medicines. Fair pricing and accessibility is another unmet global challenge.Areas covered: Here, the authors cover the pace, risks, cost, and challenges facing drug development processes. Additionally, they introduce disease-associated data which demand global attention and propose solutions to overcome these challenges.Expert opinion: The massive challenges encountered during drug development urgently call for a serious global rethinking of the way this process is done. A partial solution might be if many consortiums of multi-nations, academic institutions, clinicians, pharma companies, and funding agencies gather at different fronts to crowdsource resources, share knowledge and risks. Such an ecosystem can rapidly generate first-in-class molecules that are safe, effective, and affordable. We think that this article represents a wake-up call for the scientific community to immediately reassess the current drug discovery and development procedures.


Asunto(s)
COVID-19 , Desarrollo de Medicamentos/tendencias , Descubrimiento de Drogas , SARS-CoV-2 , COVID-19/epidemiología , Desarrollo de Medicamentos/economía , Industria Farmacéutica/economía , Industria Farmacéutica/tendencias , Salud Global , Sector de Atención de Salud/tendencias , Prioridades en Salud/economía , Humanos , Factores de Tiempo
6.
J Biol Chem ; 290(35): 21305-19, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160169

RESUMEN

Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Lípido A/inmunología , Antígeno 96 de los Linfocitos/inmunología , Receptor Toll-Like 4/inmunología , Acilación , Animales , Burkholderia cenocepacia/química , Burkholderia cenocepacia/aislamiento & purificación , Línea Celular , Células HEK293 , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Interleucina-6/inmunología , Lípido A/química , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular
7.
Environ Microbiol ; 17(3): 735-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24888970

RESUMEN

Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.


Asunto(s)
Burkholderia cenocepacia/metabolismo , Triterpenos/metabolismo , Antibacterianos/farmacología , Filogenia , Polimixina B/farmacología , Triterpenos/química
8.
Methods Mol Biol ; 1197: 311-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25172289

RESUMEN

Genetic manipulation of multidrug-resistant bacteria is often difficult and hinders progress in understanding their physiology and pathogenesis. This book chapter highlights advances in genetic manipulation of Burkholderia cenocepacia, which are also applicable to other members of the Burkholderia cepacia complex and multidrug-resistant gram-negative bacteria of other genera. The method detailed here is based on the I-SceI homing endonuclease system, which can be efficiently used for chromosomal integration, deletion, and genetic replacement. This system creates markerless mutations and insertions without leaving a genetic scar and thus can be reused successively to generate multiple modifications in the same strain.


Asunto(s)
Burkholderia cenocepacia/genética , Bacterias Gramnegativas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas/efectos de los fármacos
9.
Environ Microbiol ; 15(2): 372-85, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22830644

RESUMEN

Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.


Asunto(s)
Burkholderia cenocepacia/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Percepción de Quorum/genética , Transducción de Señal/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Espacio Extracelular/enzimología , Eliminación de Gen , Lactonas/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Virulencia/genética
10.
J Med Chem ; 56(4): 1405-17, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23256532

RESUMEN

As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-ß-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Burkholderia cenocepacia/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Conformación Proteica , Relación Estructura-Actividad , Virulencia
11.
Mol Microbiol ; 85(5): 962-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22742453

RESUMEN

One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.


Asunto(s)
Arabinosa/análogos & derivados , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Antiinfecciosos/farmacología , Arabinosa/química , Transporte Biológico/genética , Transporte Biológico/fisiología , Burkholderia cenocepacia/genética , Farmacorresistencia Bacteriana/genética , Meliteno/farmacología , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología
12.
Antimicrob Agents Chemother ; 55(7): 3313-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21537012

RESUMEN

The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections.


Asunto(s)
Antibacterianos/farmacología , Bacterias Anaerobias/efectos de los fármacos , Burkholderia pseudomallei/efectos de los fármacos , Ceftazidima/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Concentración de Iones de Hidrógeno , Nitroimidazoles/farmacología
13.
Appl Environ Microbiol ; 76(10): 3170-6, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348312

RESUMEN

Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Complejo Burkholderia cepacia/efectos de los fármacos , Complejo Burkholderia cepacia/genética , Gentamicinas/farmacología , Animales , Complejo Burkholderia cepacia/crecimiento & desarrollo , Humanos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Fagosomas/microbiología
14.
Gene ; 430(1-2): 123-31, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19010402

RESUMEN

Burkholderia pseudomallei and B. mallei are Gram-negative bacterial pathogens that cause melioidosis in humans and glanders in horses, respectively. Both bacteria are classified as category B select agents in the United States. Due to strict select-agent regulations, the number of antibiotic selection markers approved for use in these bacteria is greatly limited. Approved markers for B. pseudomallei include genes encoding resistance to kanamycin (Km), gentamicin (Gm), and zeocin (Zeo); however, wild type B. pseudomallei is intrinsically resistant to these antibiotics. Selection markers for B. mallei are limited to Km and Zeo resistance genes. Additionally, there are few well developed counter-selection markers for use in Burkholderia. The use of SacB as a counter-selection method has been of limited success due to the presence of endogenous sacBC genes in the genomes of B. pseudomallei and B. mallei. These impediments have greatly hampered the genetic manipulation of B. pseudomallei and B. mallei and currently few reliable tools for the genetic manipulation of Burkholderia exist. To expand the repertoire of genetic tools for use in Burkholderia, we developed the suicide plasmid pMo130, which allows for the compliant genetic manipulation of the select agents B. pseudomallei and B. mallei using allelic exchange. pMo130 harbors an aphA gene which allows for Km selection, the reporter gene xylE, which allows for reliable visual detection of Burkholderia transformants, and carries a modified sacB gene that allows for the resolution of co-integrants. We employed this system to generate multiple unmarked and in-frame mutants in B. pseudomallei, and one mutant in B. mallei. This vector significantly expands the number of available tools that are select-agent compliant for the genetic manipulation of B. pseudomallei and B. mallei.


Asunto(s)
Alelos , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Técnicas Genéticas , Burkholderia mallei/citología , Burkholderia pseudomallei/citología , Flagelos/genética , Prueba de Complementación Genética , Vectores Genéticos/genética , Movimiento , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Eliminación de Secuencia
15.
Adv Exp Med Biol ; 603: 225-34, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17966419

RESUMEN

Control of Yops secretion in pathogenic Yersinia is achieved at several levels. These levels likely include transcriptional, post-transcriptional, translational and secretional controls. Secretion control appears to be mediated by two pathways. One pathway involves YopN and proteins that interact with YopN. The second pathway consists of LcrG and its interaction with LcrV. LcrV is a postive regulator of Yops secretion that exerts control over Yops secretion by negating the secretion blocking role of LcrG. However, the intersection of these two control pathways is not understood. Recent work has allowed the development of a speculative model that brings YopN-mediated and LcrG-LcrV-mediated control together in the context of the ability of the needle complex to respond to Ca2+.


Asunto(s)
Antígenos Bacterianos/fisiología , Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Citotóxicas Formadoras de Poros/fisiología , Yersinia pestis/fisiología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Genes Bacterianos , Humanos , Proteínas de la Membrana/genética , Modelos Biológicos , Mutación , Proteínas Citotóxicas Formadoras de Poros/genética , Percepción de Quorum , Transducción de Señal , Yersinia pestis/genética , Yersinia pestis/patogenicidad
16.
J Bacteriol ; 189(18): 6734-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17644582

RESUMEN

LcrV, a multifunctional protein, acts as a positive regulator of effector protein secretion for the type III secretion system (T3SS) in Yersinia pestis by interaction with the negative regulator LcrG. In this study, LcrV was analyzed to identify regions required for LcrG interaction. Random-linker insertion mutagenesis, deletion analysis, and site-directed mutagenesis of hydrophobic amino acids between residues 290 and 311 allowed the isolation of an LcrV mutant (LcrV L291R F308R) defective for LcrG interaction. The new residues identified in LcrG interaction lie in helix 12 of LcrV; residues in helix 7 of LcrV are known to be involved in LcrG interaction. Helix 7 and helix 12 of LcrV interact to form an intramolecular coiled coil; these new results suggest that the intramolecular coiled coil in LcrV is required for LcrG interaction and activation of the T3SS.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Dimerización , Eliminación de Gen , Biblioteca de Genes , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Proteínas Citotóxicas Formadoras de Poros/genética , Relación Estructura-Actividad , Yersinia pestis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...